Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
J Biol Chem ; 300(3): 105703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301895

RESUMO

Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.


Assuntos
Esclerose Amiotrófica Lateral , Proteína C9orf72 , Expansão das Repetições de DNA , Fator de Iniciação 5 em Eucariotos , Degeneração Lobar Frontotemporal , Animais , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/fisiopatologia , Proteína C9orf72/genética , Dipeptídeos/genética , Expansão das Repetições de DNA/genética , Drosophila/genética , Drosophila/metabolismo , Fator de Iniciação 5 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/fisiopatologia , Células HeLa , Humanos , Modelos Animais de Doenças
2.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213020

RESUMO

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Assuntos
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Expansão das Repetições de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Morte Celular/genética
3.
Rev Neurosci ; 35(1): 85-97, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37525497

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas/genética , Proteínas/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , RNA , Arginina , Alanina , Glicina , Prolina
4.
Mar Biotechnol (NY) ; 26(1): 74-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153607

RESUMO

The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/metabolismo , Lisina , Ácido Glutâmico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Carpas/genética , Carpas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dieta/veterinária , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expressão Gênica , Ração Animal/análise , Proteínas de Peixes/genética
5.
Acta Neuropathol Commun ; 11(1): 164, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845749

RESUMO

Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Animais , Esclerose Amiotrófica Lateral/metabolismo , Dipeptídeos/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Drosophila/metabolismo , RNA/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética
6.
J Neuropathol Exp Neurol ; 82(11): 901-910, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791472

RESUMO

The hexanucleotide G4C2 repeat expansion in C9orf72 is the most frequent genetic cause of familial amyotrophic lateral sclerosis (ALS). Aberrant translation of this hexanucleotide sequence leads to production of 5 dipeptide repeats (DPRs). One of these DPRs is proline-arginine (polyPR), which is found in C9orf72-expanded ALS (C9ALS) patient brain tissue and is neurotoxic across multiple model systems. PolyPR was previously reported to bind and impair proteasomes in vitro. Nevertheless, the clinical relevance of the polyPR-proteasome interaction and its functional consequences in vivo are yet to be established. Here, we aim to confirm and functionally characterize polyPR-induced impairment of proteolysis in C9ALS patient tissue and an in vivo model system. Confocal microscopy and immunofluorescence studies on both human and Drosophila melanogaster brain tissues revealed sequestration of proteasomes by polyPR into inclusion-like bodies. Co-immunoprecipitation in D. melanogaster showed that polyPR strongly binds to the proteasome. In vivo, functional evidence for proteasome impairment is further shown by the accumulation of ubiquitinated proteins along with lysosomal accumulation and hyper-acidification, which can be rescued by a small-molecule proteasomal enhancer. Together, we provide the first clinical report of polyPR-proteasome interactions and offer in vivo evidence proposing polyPR-induced proteolytic dysfunction as a pathogenic mechanism in C9ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Humanos , Esclerose Amiotrófica Lateral/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Proteólise , Dipeptídeos/genética , Dipeptídeos/metabolismo , Prolina/genética , Prolina/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA
7.
Elife ; 122023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675986

RESUMO

A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A hallmark of ALS/FTD pathology is the presence of dipeptide repeat (DPR) proteins, produced from both sense GGGGCC (poly-GA, poly-GP, poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) transcripts. Translation of sense DPRs, such as poly-GA and poly-GR, depends on non-canonical (non-AUG) initiation codons. Here, we provide evidence for canonical AUG-dependent translation of two antisense DPRs, poly-PR and poly-PG. A single AUG is required for synthesis of poly-PR, one of the most toxic DPRs. Unexpectedly, we found redundancy between three AUG codons necessary for poly-PG translation. Further, the eukaryotic translation initiation factor 2D (EIF2D), which was previously implicated in sense DPR synthesis, is not required for AUG-dependent poly-PR or poly-PG translation, suggesting that distinct translation initiation factors control DPR synthesis from sense and antisense transcripts. Our findings on DPR synthesis from the C9ORF72 locus may be broadly applicable to many other nucleotide repeat expansion disorders.


Assuntos
Esclerose Amiotrófica Lateral , Proteína C9orf72 , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Códon de Iniciação/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Proteínas/genética
8.
Hum Mol Genet ; 33(1): 64-77, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756636

RESUMO

GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas/genética , Dano ao DNA/genética , Arginina/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética
9.
J Neurochem ; 166(2): 389-402, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319115

RESUMO

C9orf72-derived dipeptide repeats (DPRs) proteins have been regarded as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). As the most toxic DPRs in C9-ALS/FTD, poly-proline-arginine (poly-PR) is associated with the stability and accumulation of p53, which consequently induces neurodegeneration. However, the exact molecular mechanism via which C9orf72 poly-PR stabilizes p53 remains unclear. In this study, we showed that C9orf72 poly-PR induces not only neuronal damage but also p53 accumulation and p53 downstream gene activation in primary neurons. C9orf72 (PR)50 also slows down p53 protein turnover without affecting the p53 transcription level and thus promotes its stability in N2a cells. Interestingly, the ubiquitin-proteasome system but not the autophagy function was impaired in (PR)50 transfected N2a cells, resulting in defective p53 degradation. Moreover, we found that (PR)50 induces mdm2 mistranslocation from the nucleus to the cytoplasm and competitively binds to p53, reducing mdm2-p53 interactions in the nucleus in two different (PR)50 transfected cells. Our data strongly indicate that (PR)50 reduces mdm2-p53 interactions and causes p53 to escape from the ubiquitin-proteasome system, promoting its stability and accumulation. Inhibiting or at least downregulating (PR)50 binding with p53 may be therapeutically exploited for the treatment of C9-ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ubiquitina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Citoplasma/metabolismo , Dipeptídeos/genética , Expansão das Repetições de DNA
10.
Neurobiol Dis ; 184: 106197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328037

RESUMO

Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Esclerose Amiotrófica Lateral/metabolismo , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteômica , Proteínas/genética , Expansão das Repetições de DNA , Dipeptídeos/genética
11.
Nat Neurosci ; 26(8): 1328-1338, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365312

RESUMO

Repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we show that N6-methyladenosine (m6A), the most prevalent internal mRNA modification, is downregulated in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons and postmortem brain tissues. The global m6A hypomethylation leads to transcriptome-wide mRNA stabilization and upregulated gene expression, particularly for genes involved in synaptic activity and neuronal function. Moreover, the m6A modification in the C9ORF72 intron sequence upstream of the expanded repeats enhances RNA decay via the nuclear reader YTHDC1, and the antisense RNA repeats can also be regulated through m6A modification. The m6A reduction increases the accumulation of repeat RNAs and the encoded poly-dipeptides, contributing to disease pathogenesis. We further demonstrate that, by elevating m6A methylation, we could significantly reduce repeat RNA levels from both strands and the derived poly-dipeptides, rescue global mRNA homeostasis and improve survival of C9ORF72-ALS/FTD patient iPSC-derived neurons.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , RNA , RNA Mensageiro
12.
J Neurosci ; 43(17): 3186-3197, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37015810

RESUMO

Stress granules are the RNA/protein condensates assembled in the cells under stress. They play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, how stress granule assembly is regulated and related to ALS/FTD pathomechanism is incompletely understood. Mutation in the C9orf72 gene is the most common cause of familial ALS and FTD. C9orf72 mutation causes the formation of toxic dipeptide repeats. Here we show that the two most toxic dipeptide repeats [i.e., poly(GR) and poly(PR)] activate c-Jun N-terminal kinase (JNK) via the ER-stress response protein IRE1 using fly and cellular models. Further, we show that activated JNK promotes stress granule assembly in cells by promoting the transcription of one of the key stress granule proteins (i.e., G3BP1) by inducing histone 3 phosphorylation. Consistent with these findings, JNK or IRE1 inhibition reduced stress granule formation, histone 3 phosphorylation, G3BP1 mRNA and protein levels, and neurotoxicity in cells overexpressing poly(GR) and poly(PR) or neurons derived from male and female C9ALS/FTD patient-induced pluripotent stem cells. Our findings connect ER stress, JNK activation, and stress granule assembly in a unified pathway contributing to C9ALS/FTD neurodegeneration.SIGNIFICANCE STATEMENT c-Jun N-terminal kinase (JNK) is a part of the mitogen-activated protein kinase pathway, which is the central node for the integration of multiple stress signals. Cells are under constant stress in neurodegenerative diseases, and how these cells respond to stress signals is a critical factor in determining their survival or death. Previous studies have shown JNK as a major contributor to cellular apoptosis. Here, we show the role of JNK in stress granule assembly. We identify that toxic dipeptide repeats produced in ALS/FTD conditions activate JNK. The activated JNK in the nucleus can induce histone modifications which increase G3BP1 expression, thus promoting stress granule assembly and neurodegeneration.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Feminino , Humanos , Masculino , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , DNA Helicases/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Histonas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Drosophila melanogaster , Animais
13.
Neuron ; 111(9): 1381-1390.e6, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931278

RESUMO

GGGGCC repeat expansion in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat RNAs can be translated into dipeptide repeat proteins, including poly(GR), whose mechanisms of action remain largely unknown. In an RNA-seq analysis of poly(GR) toxicity in Drosophila, we found that several antimicrobial peptide genes, such as metchnikowin (Mtk), and heat shock protein (Hsp) genes are activated. Mtk knockdown in the fly eye or in all neurons suppresses poly(GR) neurotoxicity. These findings suggest a cell-autonomous role of Mtk in neurodegeneration. Hsp90 knockdown partially rescues both poly(GR) toxicity in flies and neurodegeneration in C9ORF72 motor neurons derived from induced pluripotent stem cells (iPSCs). Topoisomerase II (TopoII) regulates poly(GR)-induced upregulation of Hsp90 and Mtk. TopoII knockdown also suppresses poly(GR) toxicity in Drosophila and improves survival of C9ORF72 iPSC-derived motor neurons. These results suggest potential novel therapeutic targets for C9ORF72-ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Esclerose Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética , Expansão das Repetições de DNA , Regulação para Baixo , Drosophila/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Neurônios Motores/metabolismo
14.
Appl Microbiol Biotechnol ; 107(9): 2997-3008, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995384

RESUMO

The γ-glutamyl tripeptide glutathione (γ-Glu-Cys-Gly) is a low molecular thiol that acts as antioxidant in response to oxidative stress in eukaryotes and prokaryotes. γ-Glutamyl dipeptides including γ-Glu-Cys, γ-Glu-Glu, and γ-Glu-Gly also have kokumi activity. Glutathione is synthesized by first ligating Glu with Cys by γ-glutamylcysteine ligase (Gcl/GshA), and then the resulting dipeptide γ-glutamylcysteine is ligated with Gly by glutathione synthetase (Gs/GshB). GshAB/GshF enzymes that contain both Gcl and Gs domains are capable of catalyzing both reactions. The current study aimed to characterize GshAB from Tetragenococcus halophilus after heterologous expression in Escherichia coli. The optimal conditions for GshAB from T. halophilus were pH 8.0 and 25 °C. The substrate specificity of the Gcl reaction of GshAB was also determined. GshAB has a high affinity to Cys. γ-Glu-Cys was the only dipeptide generated when Glu, Cys, Gly, and other amino acids were present in the reaction system. This specificity differentiates GshAB from T. halophilus from Gcl of heterofermentative lactobacilli and GshAB of Streptococcus agalactiae, which also use amino acids other than Cys as glutamyl-acceptor. Quantification of gshAB in cDNA libraries from T. halophilus revealed that gshAB was overexpressed in response to oxidative stress but not in response to acid, osmotic, or cold stress. In conclusion, GshAB in T. halophilus served as part of the oxidative stress response but this study did not provide any evidence for a contribution to the resistance to other stressors.Key points Glutathione synthesis in Tetragenococcus halophilus is carried out by the two-domain enzyme GshAB. GshAB is inhibited by glutathione and is highly specific for Cys as acceptor. T. halophilus synthesizes glutathione in response to oxidative stress.


Assuntos
Dipeptídeos , Glutationa Sintase , Glutationa Sintase/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , Glutationa , Aminoácidos
15.
Proc Natl Acad Sci U S A ; 120(8): e2216547120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800389

RESUMO

Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into ß-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity. Two unrelated enzymes with this activity, isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA) have been shown to degrade ß-Asp-Arg dipeptides, but bacteria which encode cyanophycin-metabolizing genes can lack iaaA and iadA genes. In this study, we investigate a previously uncharacterized enzyme whose gene can cluster with cyanophycin-metabolizing genes. This enzyme, which we name cyanophycin dipeptide hydrolase (CphZ), is specific for dipeptides derived from cyanophycin degradation. Accordingly, a co-complex structure of CphZ and ß-Asp-Arg shows that CphZ, unlike IadA or IaaA, recognizes all portions of its ß-Asp-Arg substrate. Bioinformatic analyses showed that CphZ is found in very many proteobacteria and is homologous to an uncharacterized protein encoded in the "arginine/ornithine transport" (aot) operon of many pseudomonas species, including Pseudomonas aeruginosa. In vitro assays show that AotO is indeed a CphZ, and in cellulo growth experiments show that this enzyme and the aot operon allow P. aeruginosa to take up and use ß-Asp-Arg as a sole carbon and nitrogen source. Together the results establish the novel, highly specific enzyme subfamily of CphZs, suggesting that cyanophycin is potentially used by a much wider range of bacteria than previously appreciated.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Biopolímeros , Nitrogênio/metabolismo , Polímeros
16.
J Microbiol Biotechnol ; 33(3): 410-418, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36746911

RESUMO

Bacilysin is a dipeptide antibiotic composed of L-alanine and L-anticapsin produced by certain strains of Bacillus subtilis. Bacilysin is gaining increasing attention in industrial agriculture and pharmaceutical industries due to its potent antagonistic effects on various bacterial, fungal, and algal pathogens. However, its use in industrial applications is hindered by its low production in the native producer. The biosynthesis of bacilysin is mainly based on the bacABCDEF operon. Examination of the sequence surrounding the upstream of the bac operon did not reveal a clear, strong ribosome binding site (RBS). Therefore, in this study, we aimed to investigate the impact of RBS as a potential route to improve bacilysin production. For this, the 5' untranslated region (5'UTR) of the bac operon was edited using the CRISPR/Cas9 approach by introducing a strong ribosome binding sequence carrying the canonical Shine-Dalgarno sequence (TAAGGAGG) with an 8 nt spacing from the AUG start codon. Strong RBS substitution resulted in a 2.87-fold increase in bacilysin production without affecting growth. Strong RBS substitution also improved the mRNA stability of the bac operon. All these data revealed that extensive RBS engineering is a promising key option for enhancing bacilysin production in its native producers.


Assuntos
Bacillus subtilis , Sistemas CRISPR-Cas , Bacillus subtilis/metabolismo , Regiões 5' não Traduzidas , Óperon , Dipeptídeos/genética
17.
Proc Natl Acad Sci U S A ; 120(9): e2221529120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812212

RESUMO

Mammalian telomeres consist of (TTAGGG)n repeats. Transcription of the C-rich strand generates a G-rich RNA, termed TERRA, containing G-quadruplex structures. Recent discoveries in several human nucleotide expansion diseases revealed that RNA transcripts containing long runs of 3 or 6 nt repeats which can form strong secondary structures can be translated in multiple frames to generate homopeptide or dipeptide repeat proteins, and multiple studies have shown them to be toxic in cells. We noted that the translation of TERRA would generate two dipeptide repeat proteins: highly charged repeating valine-arginine (VR)n and hydrophobic repeating glycine-leucine (GL)n. Here, we synthesized these two dipeptide proteins and raised polyclonal antibodies to VR. The VR dipeptide repeat protein binds nucleic acids and localizes strongly to replication forks in DNA. Both VR and GL form long 8-nm filaments with amyloid properties. Using labeled antibodies to VR and laser scanning confocal microscopy, threefold to fourfold more VR was observed in the nuclei of cell lines containing elevated TERRA as contrasted to a primary fibroblast line. Induction of telomere dysfunction via knockdown of TRF2 led to higher amounts of VR, and alteration of TERRA levels using a locked nucleic acid (LNA) GapmeR led to large nuclear VR aggregates. These observations suggest that telomeres, in particular in cells undergoing telomere dysfunction, may express two dipeptide repeat proteins with potentially strong biological properties.


Assuntos
Arginina , RNA , Animais , Humanos , RNA/metabolismo , Leucina/genética , Arginina/genética , Valina , Dipeptídeos/genética , Telômero/metabolismo , Mamíferos/genética
18.
Gene ; 858: 147167, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36621656

RESUMO

A hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic alteration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These neurodegenerative diseases share genetic, clinical and pathological features. The mutation in C9ORF72 appears to drive pathogenesis through a combination of loss of C9ORF72 normal function and gain of toxic effects due to the repeat expansion, which result in aggregation prone expanded RNAs and dipeptide repeat (DPR) proteins. Studies in cellular and animal models indicate that the DPR proteins are the more toxic species. Thus, a large body of research has focused on identifying the cellular pathways most directly impacted by these toxic proteins, with the goal of characterizing disease pathogenesis and nominating potential targets for therapeutic development. The preventative block of the production of the toxic proteins before they can cause harm is a second strategy of intense focus. Despite the considerable amount of effort dedicated to this prophylactic approach, it is still unclear how the DPR proteins are synthesized from RNAs harboring repeat expansions. In this review, we summarize our current knowledge of the specific protein translation mechanisms shown to account for the synthesis of DPR proteins. We will then discuss how enhanced understanding of the composition of these toxic effectors could help in refining disease mechanisms, and paving the way to identify and design effective prophylactic therapies for C9ORF72 ALS-FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Animais , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Dipeptídeos/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteínas/metabolismo , RNA
19.
Hum Mol Genet ; 32(10): 1673-1682, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36611007

RESUMO

The abnormal expansion of GGGGCC hexanucleotide repeats within the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of GGGGCC repeat-containing RNAs as RNA foci, and the deposition of dipeptide repeat proteins (DPR) produced from these repeat RNAs by unconventional translation are major pathological hallmarks of C9orf72-linked ALS/FTD (C9-ALS/FTD), and are both thought to play a crucial role in the pathogenesis of these diseases. Because GGGGCC repeat RNA is likely to be the most upstream therapeutic target in the pathogenic cascade of C9-ALS/FTD, lowering the cellular level of GGGGCC repeat RNA is expected to mitigate repeat RNA toxicity, and will therefore be a disease-modifying therapeutic strategy for the treatment of C9-ALS/FTD. In this study, we demonstrated using a Drosophila model of C9-ALS/FTD that elevated expression of a subset of human RNA-binding proteins that bind to GGGGCC repeat RNA, including hnRNPA3, IGF2BP1, hnRNPA2B1, hnRNPR and SF3B3, reduces the level of GGGGCC repeat RNA, resulting in the suppression of neurodegeneration. We further showed that hnRNPA3-mediated reduction of GGGGCC repeat RNA suppresses disease pathology, such as RNA foci and DPR accumulation. These results demonstrate that hnRNPA3 and other RNA-binding proteins negatively regulate the level of GGGGCC repeat RNA, and mitigate repeat RNA toxicity in vivo, indicating the therapeutic potential of the repeat RNA-lowering approach mediated by endogenous RNA-binding proteins for the treatment of C9-ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença de Pick , Animais , Humanos , Demência Frontotemporal/patologia , Esclerose Amiotrófica Lateral/metabolismo , RNA/genética , RNA/metabolismo , Proteína C9orf72/genética , Drosophila/genética , Drosophila/metabolismo , Doença de Pick/genética , Proteínas/genética , Dipeptídeos/genética , Expansão das Repetições de DNA/genética
20.
Nat Chem Biol ; 19(5): 633-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702957

RESUMO

Genome mining of biosynthetic pathways with no identifiable core enzymes can lead to discovery of the so-called unknown (biosynthetic route)-unknown (molecular structure) natural products. Here we focused on a conserved fungal biosynthetic pathway that lacks a canonical core enzyme and used heterologous expression to identify the associated natural product, a highly modified cyclo-arginine-tyrosine dipeptide. Biochemical characterization of the pathway led to identification of a new arginine-containing cyclodipeptide synthase (RCDPS), which was previously annotated as a hypothetical protein and has no sequence homology to non-ribosomal peptide synthetase or bacterial cyclodipeptide synthase. RCDPS homologs are widely encoded in fungal genomes; other members of this family can synthesize diverse cyclo-arginine-Xaa dipeptides, and characterization of a cyclo-arginine-tryptophan RCDPS showed that the enzyme is aminoacyl-tRNA dependent. Further characterization of the biosynthetic pathway led to discovery of new compounds whose structures would not have been predicted without knowledge of RCDPS function.


Assuntos
Produtos Biológicos , Dipeptídeos/genética , Bactérias/genética , Família Multigênica , Vias Biossintéticas/genética , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...